A Theory of the Connectivity Dimensionality Field in Edge- Vertex Graphs and Discrete-Continuous Dual Spaces

نویسنده

  • THOMAS A. MANZ
چکیده

Over the years, a number of measures have been defined for the purpose of determining the number of independent dimensions contained in a space. The most common dimensionality measures are the topological dimensionality and various kinds of fractal dimensionalities. While each of these dimensionality measures is useful in its own right, none of them accurately quantifies the effective number of independent directions passing through locations contained in a local region of a space. This article introduces a new dimensionality measure, called the connectivity dimensionality field, which is the true measure for the effective number of independent directions passing through locations in a space. In contrast to the fractal dimensionality, the connectivity dimensionality field is a topological property because its value at each material location is invariant to deformations of the space preserving connectivity. The connectivity dimensionality field is a fundamental concept that applies to many different kinds of discrete spaces, continuous spaces, and discrete-continuous dual spaces. A discrete space is a space in which positions cannot be varied differentially, and a continuous space is a space in which positions can be varied differentially. A discrete-continuous dual space has complementary discrete and continuous representations, and a process called discretecontinuous dual matching relates the discrete and continuous representations to each other. This article formally defines two basic types of discrete-continuous duality: (a) asymptotic and (b) strict. A rigorous method is provided for computing the connectivity dimensionality field in edgevertex graphs, continuous spaces, and discrete-continuous dual spaces. Many examples are given to illustrate the key concepts. Single points, unbranched lines, and periodic lattices are examples of discrete-continuous dual spaces in which the connectivity dimensionality field is a constant nonnegative integer. In other types of discrete-continuous dual spaces, the connectivity dimensionality field contains inherent uncertainty. For the first time, a comprehensive theory is derived that predicts the inherent uncertainty associated with the connectivity dimensionality field in discrete-continuous dual spaces. The study of discrete-continuous dual spaces with variable connectivity dimensionality fields transcends variable-based mathematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

متن کامل

A note on polyomino chains with extremum general sum-connectivity index

The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...

متن کامل

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

Centric connectivity index by shell matrices

Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008